Re-examining Facility-level Effects on Diabetes Care Quality for Veterans

Adam S. Wilk, Ph.D.

Department of Health Policy and Management, Rollins School of Public Health, Emory University (Atlanta, Georgia)
Center for Clinical Management Research, Department of Veterans Affairs (Ann Arbor, Michigan)

VA HERC Health Economics Seminar -- February 17, 2016
Acknowledgments

Thanks to my co-authors Eve A. Kerr,¹,²,³ Timothy P. Hofer,¹,²,³ Rob G. Holleman,¹ Mandi L. Klamerus,¹ Danielle E. Rose,⁴ and Elizabeth M. Yano⁴,⁵

¹ Center for Clinical Management Research, Department of Veterans Affairs (Ann Arbor, Michigan)
² Department of Internal Medicine, University of Michigan Medical School (Ann Arbor, Michigan)
³ Institute for Healthcare Policy and Innovation, University of Michigan (Ann Arbor, Michigan)
⁴ Center for the Study of Healthcare Innovation, Greater Los Angeles Healthcare System, Department of Veterans Affairs (Los Angeles, California)
⁵ Department of Health Policy and Management, Fielding School of Public Health at UCLA (Los Angeles, California)
Poll Question

What is your principal interest in this work – examining facility and peer effects on diabetes care quality?

(Pick one answer.)

- Interested in improving the quality of clinicians’ diabetes care
- Interested in how physicians influence one another’s care patterns
- Interested in identifying and enhancing patients’ roles in diabetes self-care
- Interested in multilevel (e.g., physician and facility) health economics methods
- Other
Diabetes Care Quality Overall

Adults age 40+ with diabetes receiving four recommended services for diabetes in calendar year (2+ HbA1c tests, foot exam, dilated eye exam, and flu shot), by residence location and age, 2008-2010

Source: AHRQ (2013).
Background and Motivation

• Quality improvement—across high- and low-performing providers both—is paramount

• Accountability is increasing...
 • Pay for Performance
 • Hospital Value-Based Purchasing
 • Physician Quality Reporting System

• At the population level, quality improvement is often slow and uneven\(^1,2\)

• Increasingly, clinicians are employed

Sources: \(^1\)Griffith et al. (2006); \(^2\)Peterson et al. (2008)
Background and Motivation (ctd.)

• Facilities are looking for ways to improve their employee clinicians’ quality

• The literature (VA setting only):
 • Facility-level factors appear to be playing a large role in driving quality1,2
 • Key facility characteristics may include sufficiency or availability of care resources$^3-7$

Sources: 1Krein et al. (2002); 2Thompson et al. (2005); 3Ward et al., (2004); 4Jackson et al. (2005); 5Kirsh et al. (2012); 6Chou et al. (2015); 7Rose et al. (unpublished)
Limitations of the Literature

• Use traditional measures of diabetes care quality

• Cross-sectional designs limit causal inference

• In the few studies with longitudinal designs, no effort to identify relevant facility characteristics
Conceptual Framework

• Physician Learning and Peer Effects\(^1\)
 • Initial practice patterns established in training
 • Evolve over time to resemble peers’ patterns

• Resource constraints and tight coordination may accelerate assimilation

• Evidence from medical school students’ specialty choices,\(^2\) c-section rates,\(^3\) and prescribing\(^4\)

Sources: \(^1\) Phelps and Mooney (1993); \(^2\) Arcidiacono and Nicholson (2005); \(^3\) Epstein and Nicholson (2009); \(^4\) Nair, Manchanda, and Bhatia (2010)
Research Questions

1. How do health care facilities and peers affect the care patterns of individual clinicians?

Hypothesis (peer effects):
More Intensive Care Among Peers \rightarrow
More Intensive Care by Individual Physician
Research Questions (ctd.)

2. Do facility resource levels mediate peer effects?

Hypothesis:
Stronger Resource Constraints \rightarrow
Stronger Peer Effects (Hyp. 1)
Research Questions (ctd.)

3. How do peer effects identified through panel data differ from peer effects identified in cross-sectional analyses?

Hypothesis:
Panel estimates < cross-sectional estimates
Data Sources

• Diabetes episode and physician data:
 • VA Clinical Data Warehouse, FY2008-FY2011
 • Vital Status

• Facility characteristics – diabetes-relevant clinical/non-clinical staff, IT, space resources:
 • VA Clinical Practice Organization Survey, Primary Care Director Module, 2007
 • VA Primary Care Survey, 2008-09

• Area Health Resource File
Diabetes Care Quality

• Measure: Assessing blood pressure control therapy (BPC) among veterans with diabetes

• Based on Kerr and colleagues’ (2012) clinical action measure
<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) Highly intensive treatment</td>
<td>DBP < 60</td>
</tr>
<tr>
<td>(4) Intensive treatment</td>
<td>SBP ≤ 130 and DBP ≤ 65, AND</td>
</tr>
<tr>
<td></td>
<td>Not (5) + 3+ antihypertensive medications OR active intensification of Rx</td>
</tr>
<tr>
<td>(3) Appropriate care</td>
<td>SBP < 140 and DBP < 90, OR</td>
</tr>
<tr>
<td>or (5)</td>
<td>SBP < 150 and DBP < 65, OR</td>
</tr>
<tr>
<td></td>
<td>SBP < 150 and 3+ antihypertensive medications OR Other appropriate clinical action* within 90 days</td>
</tr>
<tr>
<td>(2) Potential undertreatment</td>
<td>Not (1), (3), (4) or (5)</td>
</tr>
<tr>
<td>(1) Almost certain undertreatment</td>
<td>SBP ≥ 160 OR DBP ≥ 100</td>
</tr>
</tbody>
</table>

SBP = Systolic blood pressure DBP = Diastolic blood pressure

* Patient has normal blood pressure at follow-up appointment, increased dosage, changed drug class, or new class of antihypertensive drug added to regimen
<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) Highly intensive treatment</td>
<td>DBP < 60</td>
</tr>
<tr>
<td>(4) Intensive treatment</td>
<td>Not (5) + SBP ≤ 130 and DBP ≤ 65, AND 3+ antihypertensive medications intensification of Rx</td>
</tr>
<tr>
<td>(3) Appropriate care</td>
<td>Not (4) or (5) + SBP < 140 and DBP < 90, OR SBP < 150 and DBP < 65, OR SBP < 150 and 3+ antihypertensive medications</td>
</tr>
<tr>
<td>(2) Potential undertreatment</td>
<td>Not (1), (3), (4) or (5)</td>
</tr>
<tr>
<td>(1) Almost certain undertreatment</td>
<td>SBP ≥ 160 OR DBP ≤ 100</td>
</tr>
</tbody>
</table>

SBP = Systolic blood pressure DBP = Diastolic blood pressure

* Patient has normal blood pressure at follow-up appointment, increased dosage, changed drug class, or new class of antihypertensive drug added to regimen

Dummy = 0

Dummy = 1
<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
<th>Dummy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) Highly intensive treatment</td>
<td>DBP < 60</td>
<td>0</td>
</tr>
<tr>
<td>(4) Intensive treatment</td>
<td>Not (5) + SBP ≤ 130 and DBP ≤ 65, AND 3+ antihypertensive medications OR active intensification of Rx</td>
<td></td>
</tr>
<tr>
<td>(3) Appropriate care</td>
<td>Not (4) or (5) + SBP < 140 and DBP < 90, OR SBP < 150 and DBP < 65, OR SBP < 150 and 3+ antihypertensive medications OR Other appropriate clinical action* within 90 days</td>
<td>1</td>
</tr>
<tr>
<td>(2) Potential undertreatment</td>
<td>Not (1), (3), (4) or (5)</td>
<td>0</td>
</tr>
<tr>
<td>(1) Almost certain undertreatment</td>
<td>SBP ≥ 160 OR DBP ≥ 100</td>
<td></td>
</tr>
</tbody>
</table>

SBP = Systolic blood pressure DBP = Diastolic blood pressure

* Patient has normal blood pressure at follow-up appointment, increased dosage, changed drug class, or new class of antihypertensive drug added to regimen
<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
<th>Dummy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly intensive treatment</td>
<td>DBP < 60</td>
<td>1</td>
</tr>
<tr>
<td>Intensive treatment</td>
<td>Not (5) + SBP ≤ 130 and DBP ≤ 65, AND 3+ antihypertensive medications OR intensified Rx</td>
<td>0</td>
</tr>
<tr>
<td>Appropriate care</td>
<td>Not (4) or (5) + SBP < 140 and DBP < 90, OR SBP < 150 and DBP < 65, OR SBP < 150 and 3+ antihypertensive medications</td>
<td>0</td>
</tr>
<tr>
<td>Potential undertreatment</td>
<td>Not (1), (3), (4), or (5)</td>
<td>0</td>
</tr>
<tr>
<td>Almost certain undertreatment</td>
<td>SBP ≥ 160 OR DBP ≥ 100</td>
<td>0</td>
</tr>
</tbody>
</table>

SBP = Systolic blood pressure DBP = Diastolic blood pressure

Patient has normal blood pressure at follow-up appointment, increased dosage, changed drug class, or new class of antihypertensive drug added to regimen
<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
<th>Drumm = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) Highly intensive treatment</td>
<td>DBP < 60</td>
<td></td>
</tr>
<tr>
<td>(4) Intensive treatment</td>
<td>Not (5) + SBP ≤ 130 and DBP ≤ 65, AND 3+ antihypertensive medications OR active intensification of Rx</td>
<td>Dummy = 0</td>
</tr>
<tr>
<td>(3) Appropriate care</td>
<td>Not (4) or (5) + SBP < 140 and DBP < 90, OR SBP < 150 and DBP < 65, OR SBP < 150 and 3+ antihypertensive medications</td>
<td>Other appropriate clinical action* within 90 days</td>
</tr>
<tr>
<td>(2) Potential undertreatment</td>
<td>Not (1), (3), (4) or (5)</td>
<td>Dummy = missing</td>
</tr>
<tr>
<td>(1) Almost certain undertreatment</td>
<td>SBP ≥ 160 OR DBP ≥ 100</td>
<td></td>
</tr>
</tbody>
</table>

*SBP = Systolic blood pressure DBP = Diastolic blood pressure

* Patient has normal blood pressure at follow-up appointment, increased dosage, changed drug class, or new class of antihypertensive drug added to regimen
Identifying Physician “Movers”

Model identification based on physician exposure to different facilities/peers over time

• 60%+ of diabetes care episodes at a single VA facility in a given year, min. 10 episodes
• 60%+ of diabetes care episodes at a different VA facility the next year,* min. 10 episodes
• Physician records linked across VA facilities by Data Access Request Tracker (DART) staff
• 326 unique physician movers (0.5%)

* Non-consecutive years allowed if intervening year had < 10 episodes
Empirical Framework

\[(BP \text{ Control Overall Measure mean})_{pt} \]
\[= \beta_0 + \beta_1 FAC \Delta_{pft} + \beta_X X_{pft} + Y_t + \varepsilon_{pt}\]

• Fixed effects regression models
• Physician \((p)\) - Year \((t)\) level of analysis
 • Regressions also include variables for facilities \(f\)
• Double-dot notation for physician fixed effects: variables demeaned using \(p\)-level variable means across years
• Dependent variable treated as “continuous” scale
Empirical Framework (ctd.)

\[(BP \text{ Control Overall Measure mean})_{pt} = \beta_0 + \beta_1 FACA\Delta_{pft} + \beta_X X_{pft} + Y_t + \varepsilon_{pt}\]

• Key independent variable \(FACA\Delta = \text{difference between}
 • the average* performance of the physician’s home facility in the \text{current year}, and
 • the average* performance of the physician’s home facility in the \text{most recent pre-move year}

• Control variables \(X_{pft}\) include patient mix (age, sex), practice stress, resident training, veteran density, HPSA, county diabetes burden (death rate, income, Medicaid)

• Year fixed effects \(Y_t\)

* Averages computed exclusive of physician \(p\)’s care episode data
Empirical Framework (ctd.)

• Other dependent variables:
 • Almost certain undertreatment (Measure = 1) vs. all other outcomes
 • Appropriate care (Measure = 3) vs. all other outcomes
 • Highly intensive management (Measure = 5) vs. all other outcomes

• Interacting $FACΔ$ independent variable with current-year facility resource measures
 • Results not shown
Results (Sample Descriptives)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP Control Measure Value (1 to 5)</td>
<td>3.12</td>
<td>(0.48)</td>
</tr>
<tr>
<td>Almost Certain Undertreatment (Measure = 1)</td>
<td>5.0%</td>
<td></td>
</tr>
<tr>
<td>Appropriate Care (Measure = 3)</td>
<td>68.2%</td>
<td></td>
</tr>
<tr>
<td>Highly Intensive Management (Measure = 5)</td>
<td>12.9%</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>1,016</td>
<td></td>
</tr>
</tbody>
</table>

Note: statistics computed at provider-year level. Percentages add to < 100% because Measure = 2 and Measure = 4 groups are omitted.
Results (Overall BPC Measure [1-5])

<table>
<thead>
<tr>
<th>Model</th>
<th>Key Independent Variable</th>
<th>Est. (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>Difference in Facility-year-level Performance,†</td>
<td>0.263</td>
</tr>
<tr>
<td></td>
<td>Current Facility-year Minus Pre-move Facility-year</td>
<td>(0.101)**</td>
</tr>
<tr>
<td>ii)</td>
<td>Current Facility-year-level Performance,†</td>
<td>0.254</td>
</tr>
<tr>
<td></td>
<td>Moving Physicians</td>
<td>(0.066)**</td>
</tr>
<tr>
<td>iii)</td>
<td>Current Facility-year-level Performance,†</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>All Physicians</td>
<td>(0.020)**</td>
</tr>
</tbody>
</table>

* p < 0.10. ** p < 0.05. † Variable computed exclusive of index physician episodes.

Additional control variables (results not shown) include provider-year-level averages of the following variables: Female, Age 18-40, Age 41-65, Age 66-80, and Age 81+, as well as Facility's PCPs Also Make Rounds, Facility's PCPs Also Attending Physicians, Facility's Clinicians Express Feeling Overwhelmed, Residents Trained On-site (Academic Facility), Total Episodes (1,000s) at Facility, County's Veteran Population in 2010, County's Veteran Hospital Beds in 2008, Health Professional Shortage Area, County's PCPs in Patient Care in 2010, County's Diabetes Deaths in 2004-2006, County's Per Capita Income in 2008 ($1,000s), County's Medicaid Eligible Population in 2007, and year fixed effects.
Results (BPC Measure = 1, 3, or 5)

BPC Meas. = 1 BPC Meas. = 3 BPC Meas. = 5

<table>
<thead>
<tr>
<th>Model</th>
<th>Key Independent Variable</th>
<th>Est. (SE)</th>
<th>Est. (SE)</th>
<th>Est. (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>Difference in Facility-year-level Performance,† Current Facility-year Minus Pre-move Facility-year</td>
<td>0.335</td>
<td>0.493</td>
<td>0.394</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.121)**</td>
<td>(0.109)**</td>
<td>(0.104)**</td>
</tr>
<tr>
<td>ii)</td>
<td>Current Facility-year-level Performance,† Moving Physicians</td>
<td>0.264</td>
<td>0.169</td>
<td>0.181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.119)**</td>
<td>(0.091)*</td>
<td>(0.065)**</td>
</tr>
<tr>
<td>iii)</td>
<td>Current Facility-year-level Performance,† All Physicians</td>
<td>0.121</td>
<td>0.096</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.029)**</td>
<td>(0.018)**</td>
<td>(0.020)**</td>
</tr>
</tbody>
</table>

* p < 0.10. ** p < 0.05. † Variable computed exclusive of index physician episodes.

Additional control variables (results not shown) include provider-year-level averages of the following variables: Female, Age 18-40, Age 41-65, Age 66-80, and Age 81+, as well as Facility's PCPs Also Make Rounds, Facility's PCPs Also Attending Physicians, Facility's Clinicians Express Feeling Overwhelmed, Residents Trained On-site (Academic Facility), Total Episodes (1,000s) at Facility, County's Veteran Population in 2010, County's Veteran Hospital Beds in 2008, Health Professional Shortage Area, County's PCPs in Patient Care in 2010, County's Diabetes Deaths in 2004-2006, County's Per Capita Income in 2008 ($1,000s), County's Medicaid Eligible Population in 2007, and year fixed effects.
Results Summary

• Strong evidence of peer effects. For a one-point increase in peers’ overall BPC measure score (versus pre-move peers), physician movers increase their overall BPC score 0.263 points
 • Facility resources do not mediate effects

• Panel effects for physician movers typically larger than cross-sectional effects for movers or for all sample physicians
 • Particularly in analysis of dichotomous outcomes
Limitations

• Peer effects model results must be interpreted with caution¹

• Movers may not be representative of VA physicians, non-VA physicians

• Examining one quality measure only

• Examining diabetes care-relevant resources only

Sources: ¹Mansky (1993)
Conclusions

In managing the blood pressure of veterans with diabetes, physician practice patterns tend to coalesce quickly at the facility level.

If facility and care team factors drive these peer effects, researchers must look to mechanisms other than resources to explain how.
Comments and questions are welcome!

Contact: Adam S. Wilk
E-mail: adam.s.wilk@emory.edu
Twitter: @adamswilk
References